1,883 research outputs found

    Application of knowledge-based techniques to fault diagnosis of 16 QAM digital microwave radio equipment

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D86372 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Effect of small-vessel disease on cognitive trajectory after atrial fibrillation-related ischaemic stroke or TIA

    Get PDF
    Post-stroke dementia is common but has heterogenous mechanisms that are not fully understood, particularly in patients with atrial fibrillation (AF)-related ischaemic stroke or TIA. We investigated the relationship between MRI small-vessel disease markers (including a composite cerebral amyloid angiopathy, CAA, score) and cognitive trajectory over 12 months. We included patients from the CROMIS-2 AF study without pre-existing cognitive impairment and with Montreal Cognitive Assessment (MoCA) data. Cognitive impairment was defined as MoCA < 26. We defined "reverters" as patients with an "acute" MoCA (immediately after the index event) score < 26, who then improved by ≥ 2 points at 12 months. In our cohort (n = 114), 12-month MoCA improved overall relative to acute performance (mean difference 1.69 points, 95% CI 1.03-2.36, p < 0.00001). 12-month cognitive impairment was associated with increasing CAA score (per-point increase, adjusted OR 4.09, 95% CI 1.36-12.33, p = 0.012). Of those with abnormal acute MoCA score (n = 66), 59.1% (n = 39) were "reverters". Non-reversion was associated with centrum semi-ovale perivascular spaces (per-grade increase, unadjusted OR 1.83, 95% CI 1.06-3.15, p = 0.03), cerebral microbleeds (unadjusted OR 10.86, 95% CI 1.22-96.34, p = 0.03), and (negatively) with multiple ischaemic lesions at baseline (unadjusted OR 0.11, 95% CI 0.02-0.90, p = 0.04), as well as composite small-vessel disease (per-point increase, unadjusted OR 2.91, 95% CI 1.23-6.88, p = 0.015) and CAA (per-point increase, unadjusted OR 6.71, 95% CI 2.10-21.50, p = 0.001) scores. In AF-related acute ischaemic stroke or TIA, cerebral small-vessel disease is associated both with cognitive performance at 12 months and failure to improve over this period

    Cognitive impairment prior to atrial fibrillation–related ischaemic events: neuroimaging and prognostic associations

    Get PDF
    Background: It is likely that a proportion of poststroke cognitive impairment is sometimes attributable to unidentified prestroke decline; prestroke cognitive function is also clinically relevant because it is associated with poor functional outcomes, including death. We investigated the radiological and prognostic associations of preexisting cognitive impairment in patients with ischemic stroke or transient ischemic attack associated with atrial fibrillation. Methods and Results: We included 1102 patients from the prospective multicenter observational CROMIS‐2 (Clinical Relevance of Microbleeds in Stroke 2) atrial fibrillation study. Preexisting cognitive impairment was identified using the 16‐item Informant Questionnaire for Cognitive Decline in the Elderly. Functional outcome was measured using the modified Rankin scale. Preexisting cognitive impairment was common (n=271; 24.6%). The presence of lacunes (odds ratio [OR], 1.50; 95% CI, 1.03–1.05; P=0.034), increasing periventricular white matter hyperintensity grade (per grade increase, OR, 1.38; 95% CI, 1.17–1.63; P<0.0001), deep white matter hyperintensity grade (per grade increase, OR, 1.26; 95% CI, 1.05–1.51; P=0.011), and medial temporal atrophy grade (per grade increase, OR, 1.61; 95% CI, 1.34–1.95; P<0.0001) were independently associated with preexisting cognitive impairment. Preexisting cognitive impairment was associated with poorer functional outcome at 24 months (mRS >2; adjusted OR, 2.43; 95% CI, 1.42–4.20; P=0.001). Conclusions: Preexisting cognitive impairment in patients with atrial fibrillation–associated ischemic stroke or transient ischemic attack is common, and associated with imaging markers of cerebral small vessel disease and neurodegeneration, as well as with longer‐term functional outcome

    Manganese and cobalt redox cycling in laterites; Biogeochemical and bioprocessing implications

    Get PDF
    This research was developed during the PhD studies of Agustín Solano Arguedas in the University of Manchester, United Kingdom. PhD scholarship was funded by the Ministerio de Ciencia, Tecnología y Telecomunicaciones (MICITT) of the Government of Costa Rica and the Universidad de Costa Rica (UCR). Agustín Solano Arguedas is a researcher at the Unidad de Recursos Forestales (Reforesta, Unit of Forest Resources) of the Instituto de Investigaciones en Ingeniería (INII, Engineering Research Institute), UCR.Cobalt is essential for the modern technology that underpins the decarbonisation of our economies, but its supply is limited leading to its designation as a critical metal. Cobalt biogeochemistry is poorly understood, yet knowledge of how biogeochemical cycling impacts cobalt behaviour could assist the development of new techniques to recover cobalt from ores, and so improve the security of supply. Laterites are an important source of cobalt, they are primarily processed for nickel using energy or chemical intensive processes, with cobalt recovered as a by-product. Metal-reducing conditions were stimulated in laterite sediment microcosms by the addition of simple and cheaply available organic substrates (acetate or glucose). At the end of the experiment the amount of easily recoverable cobalt (aqueous or extractable with acetic acid) increased from < 1% to up to 64%, which closely mirrored the behaviour of manganese, while only a small proportion of iron was transformed into an easily recoverable phase. Sequencing of the microbial community showed that the addition of organic substrates stimulated the growth of indigenous prokaryotes closely related to known manganese(IV)/iron(III)-reducers, particularly from the Clostridiales, and that fungi assigned to Penicillium, known to produce organic acids beneficial for leaching cobalt and nickel from laterites, were identified. Overall, the results indicate that the environmental behaviour of cobalt in laterites is likely to be controlled by manganese biogeochemical cycling by microorganisms. These results are compelling given that similar behaviour was observed in four laterites (Acoje, Çaldağ, Piauí and Shevchenko) from different continents. A new bioprocessing strategy is proposed whereby laterites are treated with an organic substrate to generate metal-reducing conditions, then rinsed with acetic acid to remove the cobalt. Not only are organic substrates environmentally-friendly and potentially sourced from waste carbon substrates, a minimal amount of iron oxides was mobilised and consequently less waste generated.Natural Environment Research Council/[CoG3 NE/M011518/1]/NERC/Reino UnidoDiamond Light Source/[SP16735]//Reino UnidoDiamond Light Source/[SP17313]//Reino UnidoOffice of Science User Facility/[DE-AC02-05CH11231]//Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Instituto Investigaciones en Ingeniería (INII

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution

    Get PDF
    Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
    corecore